
Malaysian Journal of Mathematical Sciences 17(3): 263–281 (2023)
https://doi.org/10.47836/mjms.17.3.03

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Dynamical Analysis of Two-Preys and One Predator Interaction Model with
An Allee Effect on Predator

Kumar, G. S.1 and Gunasundari, C.∗2

1Department of Mathematics, College of Engineering and Technology,
SRM Institute of Science and Technology, Kattankulathur, India

2Department of Mathematics, College of Engineering, Anna University, Chennai, India

E-mail: gunasundari@annauniv.edu
∗Corresponding author

Received: 13 March 2023
Accepted: 13 June 2023

Abstract

Mathematical modeling in biology is quite interesting in the field of real-world problems. This
research paper focused on the interaction between two prey and one predator species. Here,
our interaction is based upon the competition between two prey and one predator including an
additive Allee effect in the predator population alongwith a Holling type II functional response.
Further, this intuition allowed us to prove the positive invariance and boundedness of themodel.
This analysis shows that there are six equilibrium points including the coexistence of all three
populations. Stability analyses are also derived and proved both locally and globally. Also in
this paper, we discussed the optimal control approach to reduce the population affected by an
Allee effect by the predator population. Numerical simulations are carried out to support our
theoretical results.
Keywords: prey-predator model; Allee effect; equilibria analysis; stability; optimal control.
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1 Introduction

One of the most fascinating subjects in theoretical ecology is the prey-predator model. Es-
sentially, the Lotka-Volterra equation with a two-dimensional system [2] used to investigate this
model. Furthermore, assuming some contests between the prey and predator may expand this to
two or three dimensions. In general, the competition model Dian Savitri [19] and [18] informs
us about interactions between species that share the same ecosystem. Now, when two or more
species share a habitat, they share certain resources, measure their food supplies, and may even
share their eating patterns. They have competition as a result of this sort of sharing. Many aca-
demics pay their way to determine the consequences of the competition (results), such as the
existence and extinction of populations, as a result of such competitions [1, 9]. This work aims to
investigate the prey-predator model with two prey and one predator, as well as the Allee impact
on the predator.

Allee effects occur in tiny or sparse populations and are commonly considered to bewidespread
in nature, despite their rarity. Population growth in populations vulnerable to Allee effects slows
at low densities. Warder Clyde Allee (1885-1955), a University of Chicago biologist and animal
ecologist shows a specific interest in animal group behavior. Allee, a keen observer of animal be-
havior, discovers that crowding, not competition, inhibited population increase in many species.
The Allee effect creates a loss of biodiversity for the animals in an ecosystem. Animals were dying
by this affordable change in an ecosystem without finding suitable mates, affected by the disease,
proper food, good environment. Many epidemiological models are formulated and published so
many results [7, 8]. By influencing Allee effect parameters on the species living in an ecosystem,
numerous researchers establish various concepts in both weak and strong Allee effect competition
models andproducedmany important results [11, 24]. A positive relationship between fitness and
population size can be caused by a variety of mechanisms that affect reproduction and survival.
A well-established example, mate limitation, results in under-crowding in species that reproduce
sexually because sexual reproduction requires contact between male and female gametes. Male
limitation reduces reproduction when plants or animals release gametes into the environment or
when males and females have difficulty locating each other. When behaviors such as breeding,
feeding, and defense are cooperative, they become more efficient or successful in larger social
groups, resulting in increased reproductive success or survivorship. Functional response, which
assesses predation rate, is an essential component that influences both prey and predator growth
rates.

In this study, we use the Holling type II [22] functional response. With all these credentials,
this article focused on the stability and optimal control strategy for preventing the death rate of the
population from anAllee impact on a predator. Raymond [14] recently develops amodelwith two
prey and one predator, each having a Holling type II functional response, prey competition, and
harvesting for all populations. Their debate focuses on the best harvesting policy for the greatest
economic gain while ensuring the long-term viability of the population. Absos Ali Shaikh and
Harekrishna Das [20] report the dynamics of a prey-predator model with sickness in the predator
population and prey population sensitive to the Allee effect. Studying the dynamics of a prey-
predator model in which both the prey and the predator exhibit herd behavior is the goal of the
work of Debasis Manna, Alakes Maiti, and G.P. Samanta [12, 10]. In this study, they separate the
prey population into two subpopulations: susceptible prey and infected prey, and develop a prey-
predator model with Michaelis-Menten functional response [16]. S. Sourav Kumar and Joydev
Chattopadhyay propose a universal prey-predator model with sickness in both the prey and the
predator vulnerable to the weak Allee effects [17]. The novelty of our work is that we use the
Holling-type functional response to frame the prey-predator and allow the predator population
to be susceptible to the additiveAllee effect. We also incorporate the idea of optimummanagement
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to slow the rate at which species in an ecosystem are extirpating. Additionally, we create the best
possible environment for the species to maintain itself in without facing extinction. We anticipate
that the conclusions in this research would undoubtedly benefit ecologists and, as a result, might
improve theoretical ecology. Here, we propose the model given by,

dR1

dt
= ω1R1

(
1− R1

K1

)
− λ12R1R2 −

λ13R1D

1 + βR1
,

dR2

dt
= ω2R2

(
1− R2

K2

)
− λ21R1R2 −

λ23R2D

1 + ηR2
,

dD

dt
= −χD +

(
λ13λ31R1D

1 + βR1
+

λ23λ32R2D

1 + ηR2

)(
D

σ +D

)
,

(1)

where,R1,R2 andD represent the 1st prey, 2nd prey and predator population. ω1 andω2 represent
the intrinsic growth rate of the 1st and 2nd prey populations. χ represents the natural death rate
of the predator. K1 and K2 are the carrying capacity of the 1st and 2nd preys. λ12 and λ21 are the
competition coefficient of 2nd prey on the 1st prey as well as 1st prey on the 2nd prey. Predation
behavior is modeled by Holling type II functional response since both prey and predator are easy
to capture and handle, which are given by λ13R1D

1 + βR1
for the 1st prey and λ23R2D

1 + ηR2
for the 2nd prey.

λ13 and λ31 are the impacts of the predator on the 1st prey and an impact of the 1st prey on a
predator. Similarly, λ23 and λ32 are the impacts of the predator on the 2nd prey and an impact of
the 2nd prey on a predator. And, where σ is an Allee threshold frequency.

We make the system (1) dimensionless one by choosing

µ1 = λ12K2, µ2 = λ21k1, Q1 = λ13K3, Q2 = λ23K3, Ψ1 = βK1,

Ψ2 = ηK2, e1 = λ31λ13K1K3, and e2 = λ32λ23K2K3.

Then, we formulate the model as,
du

dt
= ω1u(1− u)− µ1uv −

Q1uw

1 + Ψ1u
,

dv

dt
= ω2v(1− v)− µ2uv −

Q2vw

1 + Ψ2v
,

dw

dt
= −χw +

(
e1uw

1 + Ψ1u
+

e2vw

1 + Ψ2v

)(
w

σ + w

)
,

(2)

where u, v and w be the current population size of 1st prey, 2nd prey and predator. µ1 and µ2

are the competition coefficient of an interaction between the preys. Q1uw

1 + Ψ1u
and Q2vw

1 + Ψ2v
are the

Holing Type II functional response. e1 and e2 are the rates at which predation becomes predator
growth. Here, we discussed the positive invariance and the boundedness of the system (2).

1.1 Positive invariance and boundedness

Positive invariance refers to a property of a set in which any trajectory that starts inside the
set remains inside the set for all time. The set is "invariant" under the dynamics of the system,
according to this. It is significant since it ensures that the systemwill never exit a certain state space
area, which can be useful for analyzing the stability characteristics of the system. For instance, all
trajectories that begin inside a positive invariant set that contains a stable equilibrium point of a
system will converge to that equilibrium point.
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On the other hand, boundedness refers to the characteristic of a system in which all paths
stay inside a certain finite area of the state space. Being confined suggests that the system will
not develop into an unbounded state over time, which is frequently a bad quality. In a population
model, for instance, boundedness indicates that the population size will not increase past a certain
threshold, which may be set by resource limitations or other variables.
Theorem 1.1. The solution of the system (2) remains positive across R3

+.

Proof. Consider the system (2), and convert it to a vector form

Ẋ = ȷ(X(t)), (3)

where, X(t) = (x1, x2, x3)
T = (u(t), v(t), w(t))T , X(0) = (u(0), v(0), w(0))T ∈ R3

+ and

j (X (t)) =

 j1 (X (t))
j2 (X (t))
j3 (X (t))

 =


ω1u (1− u)− µ1uv −

Q1uw

1 + Ψ1u

ω2v (1− v)− µ2uv −
Q2vw

1 + Ψ2v

−χω +

(
e1uw

1 + Ψ1u
+

e2vw

1 + Ψ2v

)(
w

σ + w

)

 .

Here, ji(X(t)) ≥ 0, (for i = 1, 2, 3). Nagumos theorem [3] states that every solution of X ′
=

j(X(t)) given a starting point X(0) = X0 ∈ R3
+ say X(t) = X(t;X0) as if X(t) ∈ R3

+ ∀ t > 0, (i.e.)
(2) the solution of the system should remain positive across the territory R3

+.
Theorem 1.2. The solutions of the system (2) are eventually bounded.

Proof. Consider a function,
X = αU + βV +W, (4)

then the time derivative of the system (2) solutions is given by,

dX

dt
= α

dU

dt
+ β

dV

dt
+

dW

dt
, (5)

dX

dt
= α

[
ω1u− ω1u

2 − µ1uv −
Q1uw

1 + Ψ1u

]
+ β

[
ω2v − ω2v

2 − µ2uv −
Q2vw

1 + Ψ2v

]
− χw

+
e1uw

1 + Ψ1u

w

σ + w
+

e2vw

1 + Ψ2v

w

σ + w
,

dX

dt
= αω1u− αω1u

2 − αµ1uv −
αQ1uw

1 + Ψ1u
+ βω2v − βω2v

2 − βµ2uv

− βQ2vw

1 + Ψ2v
− χw +

(
e1u

1 + Ψ1u
+

e2v

1 + Ψ2v

)(
w2

σ + w

)
.

Choose ξ > 0,

dX

dt
+ ξX = (αω1 + ξ)u+ (βω2 + ξ)v + wξ +

(
e1u

1 + Ψ1u
+

e2v

1 + Ψ2v

)
w2

σ + w

− αω1u
2 − αµ1uv −

αQ1uw

1 + Ψ1u
− βω2v

2 − βµ2uv −
βQ2vw

1 + Ψ2v
− χw,

dX

dt
+ ξX ≤ (αω1 + ξ)u+ (βω2 + ξ)v + ξw +

(
e1u

1 + Ψ1u
+

e2v

1 + Ψ2v

)
w2

σ + w
.
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As a result, a positive number exists

dX

dt
+ ξX ≤ M. (6)

Hence, the suggested system’s positive solutions are eventually bounded.

1.2 Equilibrium points

We find the equilibrium state of the model by setting du

dt
=

dv

dt
=

dw

dt
= 0. We also suppose

that the predator has a high rate of death. The probable equilibrium points for the system are
listed below. P1(u

∗, 0, 0), P2(0, v
∗, 0), P3(u

∗, v∗, 0), P4(u
∗, 0, w∗), P5(0, v

∗, w∗) and P6(u
∗, v∗, w∗).

As a result,

i)With u∗ > 0, the equilibrium point is P1(u
∗, 0, 0). In the absence of a 2nd prey and a predator,

we use the system (2). Therefore,

P1(u
∗, 0, 0) = P1(1, 0, 0). (7)

ii) With v∗ > 0, the equilibrium point is P2(0, v
∗, 0). In the absence of a 1st prey and a predator

(u∗ = 0) and (w∗ = 0). Therefore,

P2(0, v
∗, 0) = P2(0, 1, 0). (8)

iii) With both u∗ > 0 and v∗ > 0, therefore the equilibrium point is

P3(u
∗, v∗, 0) = P3

(
ω2(ω1 − µ1)

ω1ω2 − µ1µ2
,
ω1(ω2 − µ2)

ω1ω2 − µ1µ2
, 0

)
. (9)

This exists if ω1 > µ1 and µ1µ2 < ω1ω2. And, so ω2 > µ2.

iv) With u∗ > 0 and w∗ > 0, the equilibrium point is P4(u
∗, 0, w∗). In the absence of 2nd prey

(v∗ = 0). Therefore,

P4(u
∗, 0, w∗) = L1, (See in Appendix).

v) With v∗ > 0 and w∗ > 0, the equilibrium point is P5(0, v
∗, w∗). In the absence of 1st prey

(u∗ = 0). Therefore,

P5(0, v
∗, w∗) = L2, (See in Appendix).

The results for positive equilibrium points are produced by the cases listed below:

Necessary conditions for the equilibrium points to be positive in the absence of 2nd prey popula-
tion are given by,

• For 1st prey population
– Equilibrium Points: P4(u

∗, 0, w∗)

267



G. S. Kumar and C. Gunasundari Malaysian J. Math. Sci. 17(3): 263–281(2023) 263 - 281

– Sign: Positive
– Case-1:

(ω1χΨ1 − ω1e1) > 0, ω1e1 < ω1χΨ1,

4(ω1χΨ1 − ω1e1)(−ω1e1) < (ω1χ− ω1χΨ1 + ω1e1)
2,

ω1χΨ1 > ω1(χ+ e1) and ω1χΨ1 > (ω1χ− ω1χΨ1 + ω1e1)
2.

– Case-2:

ω1χΨ1 < (ω1χ− ω1χΨ1 + ω1e1)
2.

• For predator population
– Equilibrium Points: P4(u

∗, 0, w∗)

– Sign: Positive
– Case-1:

e1Q1 > χΨ1Q1, (ω1χΨ1 − ω1e1) > 0, ω1e1 < ω1χΨ1,

4(ω1χΨ1 − ω1e1)(−ω1χ− χσQ1) < (ω1χ− ω1χΨ1 + ω1e1)
2 and

ω2
1χΨ1e1

2(ω1χΨ1 − ω1e1)
< ω1e1 +

ω2
1χe1

2(ω1χΨ1 − ω1e1)
+

ω2
1e

2
1

2(ω1χΨ1 − ω1e1)
+ χσΨ1Q1.

– Case-2:
ω2
1χΨ1e1

2(ω1χΨ1 − ω1e1)
+ (ω1χ− ω1χΨ1 + ω1e1)

2

< ω1e1 +
ω2
1χe1

2(ω1χΨ1 − ω1e1)
+

ω2
1e

2
1

2(ω1χΨ1 − ω1e1)
+ χσΨ1Q1.

Necessary conditions for the equilibrium points to be positive in the absence of 1st prey pop-
ulation are given by,

• For 2nd prey population
– Equilibrium Points: P5(0, v

∗, w∗)

– Sign: Positive
– Case-1:

(ω2χΨ2 − ω2e2) > 0, ω2e2 < ω2χΨ2,

4(ω2χΨ2 − ω2e2)(−ω2e2) < (ω2χ− ω2χΨ2 + ω2e2)
2,

ω2χΨ2 > ω2(χ+ e2) and ω2χΨ2 > (ω2χ− ω2χΨ2 + ω2e2)
2.

– Case-2:

ω2χΨ2 < (ω2χ− ω2χΨ2 + ω2e2)
2.

• For predator population
– Equilibrium Points: P5(0, v

∗, w∗)
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– Sign: Positive
– Case-1:

e2Q2 > χΨ2Q2, (ω2χΨ2 − ω2e2) > 0, ω2e2 < ω2χΨ2,

4(ω2χΨ2 − ω2e2)(−ω2χ− χσQ2) < (ω2χ− ω2χΨ2 + ω2e2)
2, and

ω2
2χΨ2e2

2(ω2χΨ2 − ω2e2)
< ω2e2 +

ω2
2χe2

2(ω2χΨ2 − ω2e2)
+

ω2
2e

2
2

2(ω2χΨ2 − ω2e2)
+ χσΨ2Q2.

– Case-2:
ω2
2χΨ2e2

2(ω2χΨ2 − ω2e2)
+ (ω2χ− ω2χΨ2 + ω2e2)

2

< ω2e2 +
ω2
2χe2

2(ω2χΨ2 − ω2e2)
+

ω2
2e

2
2

2(ω2χΨ2 − ω2e2)
+ χσΨ2Q2.

1.3 Existence of an endemic equilibrium

Consider the system (2). You should be comfortable with nonlinear equations by now. Indeed,
you most likely spend a significant amount of time manipulating and plotting the answers to
equations of the type,

E∗ = (u, u+ t1, u+ t2), (10)

where, t1 and t2 are the undefined constants. Furthermore, we wish to find the locations (u, v, w)
in R3 that satisfy the aforementioned system of non-linear equations. In this case, the polynomial
equation with u∗ as a root is,

ρ1u
3 + ρ2u

2 + ρ3u+ ρ4 = 0. (11)

The co-efficients of ρi, i = 1, 2, 3, 4 are defined by,

ρ1 = e1Ψ2 + e2Ψ1 − χΨ1Ψ2,

ρ2 = e2Ψ1t2 + e2Ψ1t1 + e2 + e1Ψ2t2 + e1Ψ2t1 + e1 − χΨ1Ψ2t2 − χΨ1Ψ2t1 − χΨ2

− χΨ1 − χΨ1Ψ2σ,

ρ3 = e2Ψ1t1t2 + e2t2 + e2t1 + e1Ψ2t1t2 + e1t2 − χΨ1Ψ2t1t2 − χΨ2t2 − χΨ2t1

− χΨ1t2 − χ− χΨ1Ψ2σt1 − χΨ2σ − χΨ1σ,

ρ4 = e2t1t2 − χΨ2t1t2 − χt2 − χΨ2σt1 − χσ.

By observing the sign of the discriminant (Descartes rule) [5], we can establish the nature of the
roots for (2). As a result, there is a sufficient condition that (2)must have at least one positive root is
ρ4 < 0, This results in e2t1t2 < χΨ2t1t2+χt2+χΨ2σt1+χσ. Hence, when an endemic equilibrium
and an Allee effect coexist, the system (2) can only have one positive equilibrium point.

Generally, in population dynamics stability plays a vital role to determine whether the popula-
tion is stable or not at any time (t). Some researchers may develop this and talk about the stability
in a continuous and discrete time too. So further, this paper is focuses to determining the stability
of all three populations with an Allee effect.
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2 Stability Analysis

We use the Jacobian matrix to examine the local stability of the equilibrium points,

J(Pi) =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 ,

where
uij ∀ (i, j = 1, 2, 3), (Refer Appendix).

i) P0(0, 0, 0), the eigen values are obtain from the Jacobian matrix J(P0) are ω1 − λ, ω2 − λ and
−χ− λ. So that, (ω1 − λ) > 0 and (ω2 − λ) > 0 are positive always. Hence, P0(0, 0, 0) is unstable.

ii) P1(u
∗, 0, 0) = P1(1, 0, 0), the eigen values are obtain from the Jacobian matrix J(P1) are

−ω1 − λ, −ω2 + µ2 + λ and −χ− λ. So that, −(ω1 + λ) < 0,−(χ+ λ) < 0 and µ2 − ω2 + λ) < 0 if
µ2 > ω2. Hence, P1(u

∗, 0, 0) is stable if µ2 > ω2 for µ2 − ω2 + λ) < 0.

iii) P2(0, v
∗, 0) = P2(0, 1, 0), the eigen values are obtain from the Jacobian matrix J(P2) are

ω1 − µ1 − λ, −(ω2 + λ) and −(χ+ λ). So that, −(ω2 + λ) < 0,−(χ+ λ) < 0 and (ω1 − µ1 − λ) < 0
if µ1 > ω1. Hence, P2(0, v

∗, 0) is stable if µ1 > ω1 for (ω1 − µ1 − λ) < 0.

iv) P3(u
∗, v∗, 0) = P3

(
ω2(ω1 − µ1)

ω1ω2 − µ1µ2
,
ω1(ω2 − µ2)

ω1ω2 − µ1µ2
, 0

)
. The characteristic equation is used to

get the eigen values of the Jacobian matrix J(P3) such as,
λ3 − (A∗

1 +B∗
1 + C∗

1 )λ
2 + (B∗

1C
∗
1 +A∗

1C
∗
1 +A∗

1B
∗
1 − E∗

1D
∗
1)λ− (A∗

1B
∗
1C

∗
1 +D∗

1C
∗
1E

∗
1 ) = 0, (12)

where, A∗
1, B∗

1 , C∗
1 , D∗

1 and E∗
1 are listed in the Appendix section.

This can be represented in the following way,
λ3 + a1λ

2 + a2λ+ a3 = 0, (13)
where,

a1 = −(A∗
1 +B∗

1 + C∗
1 ),

a2 = B∗
1C

∗
1 +A∗

1C
∗
1 +A∗

1B
∗
1 − E∗

1D
∗
1 ,

a3 = −(A∗
1B

∗
1C

∗
1 +D∗

1C
∗
1E

∗
1 ).

By, Routh-Hurwitz criteria, the negative eigenvalues are stable if a1 > 0, a3 > 0, a1a2 − a3 > 0.
Otherwise, unstable.

v) P4(u
∗, 0, w∗) = L1, (See in Appendix).

The characteristic equation is used to get the eigen values of the Jacobian matrix J(P4) such as,
λ3 − (A∗

2 +B∗
2 + C∗

2 )λ
2 + (B∗

2C
∗
2 +A∗

2C
∗
2 + E∗

2D
∗
2 +A∗

2B
∗
2)λ− (A∗

2B
∗
2C

∗
2 +D∗

2B
∗
2E

∗
2 ) = 0, (14)

where, A∗
2, B∗

2 , C∗
2 , D∗

2 and E∗
2 are listed in the Appendix section.

This can be represented in the following way,
λ3 + b1λ

2 + b2λ+ b3 = 0, (15)
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where,
b1 = −(A∗

2 +B∗
2 + C∗

2 ),

b2 = B∗
2C

∗
2 +A∗

2C
∗
2 + E∗

2D
∗
2 +A∗

2B
∗
2 ,

b3 = −(A∗
2B

∗
2C

∗
2 +D∗

2B
∗
2E

∗
2 ).

By Routh-Hurwitz criteria, the negative eigen values are stable if b1 > 0, b2 > 0, b3 > 0 and
b1b2 > b3. Otherwise, unstable.

vi) P5(0, v
∗, w∗) = L2, (See in Appendix).

The characteristic equation is used to get the eigen values of the Jacobian matrix J(P5) such as,
λ3 − (A∗

3 +B∗
3 + C∗

3 )λ
2 + (B∗

3C
∗
3 +D∗

3E
∗
3 +A∗

3C
∗
3 +A∗

3B
∗
3)λ− (A∗

3B
∗
3 + C∗

3 +A∗
3E

∗
3 +D∗

3) = 0,(16)
where, A∗

3, B∗
3 , C∗

3 , D∗
3 and E∗

3 are listed in the Appendix section.

This can be represented in the following way,
λ3 + c1λ

2 + c2λ+ c3 = 0, (17)
where,

C∗
1 = −(A∗

3 +B∗
3 + C∗

3 ),

C∗
2 = B∗

3C
∗
3 +D∗

3E
∗
3 +A∗

3C
∗
3 +A∗

3B
∗
3 ,

C∗
3 = −(A∗

3B
∗
3C

∗
3 +A∗

3E
∗
3G

∗
3).

By Routh-Hurwitz criteria, the negative eigen values are stable if C1 > 0, C2 > 0, C3 > 0 and
C1C2 > C3. Otherwise, unstable.

2.1 Local stability

Theorem 2.1. The co-existence equilibrium point (u∗, v∗, w∗) of the system is locally asymptotically stable
if the conditions S1 > 0, S2 > 0 and S1S2 − S3 > 0 are satisfied, where Si, i = 1, 2, 3 are given in the
proof of the theorem

Proof. The Jacobian matrix entries J(Pi) at (u∗, v∗, w∗) are given [23] as follows,

J(Pi) =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 ,

where, uij ∀ (i, j = 1, 2, 3), (Refer Appendix).

The characteristic equation corresponding to J(Pi) is given by
λ3 + S1λ

2 + S2λ+ S3 = 0, (18)
where, Si ∀ (i = 1, 2, 3)which are listed in the Appendix section.

From the above data S1, S2, and S3 are greater than zero ifH1,H2 andH3 hold, respectively (See
Appendix).

By Routh-Hurwitz criterion, if the criteria S1 > 0, S2 > 0, S3 > 0 and S1S2 − S3 > 0 are met the
coexistence equilibrium (u∗, v∗, w∗) is locally asymptotically stable.
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2.2 Global stability

Global Stability is an important and required concept in the stability analysis of population
dynamics [4, 6]. In this discussion, we consider the global stability of a system with two prey
species and one predator species, considering an Allee effect. The Allee effect is a phenomenon
in which the population growth rate of a species decreases at low population densities. Using the
Lyapunov function, we can prove that the equilibrium point (u∗, v∗, w∗) is globally stable under
certain conditions.
Theorem 2.2. The co-existence equilibrium point P6(u

∗, v∗, w∗) is globally asymptotically stable.

Proof. Consider the Lyapunov function,

Z(u, v, w) = (u− u∗)− u∗ log

(
u

u∗

)
+ (v − v∗)− v∗ log

(
v

v∗

)
+ (w − w∗)− w∗ log

(
w

w∗

)
, (19)

Z(u, v, w) = u− u∗ − u∗[log u− log u∗] + v − v∗ − v∗[log v − log v∗] + w

− w∗ − w∗[logw − logw∗],

Z(u, v, w) = u− u∗ − u∗ log u+ u∗ log u∗ + v − v∗ − v∗ log v + v∗ log v∗ + w − w∗

− w∗ logw + w∗ logw∗.

Then,
∂z

∂u
= 1− u∗

u
=

u− u∗

u
,

∂z

∂v
= 1− v∗

v
=

v − v∗

v
,

∂z

∂w
= 1− w∗

w
=

w − w∗

w
.

And
dz

dt
=

∂z

∂u

du

dt
+

∂z

∂v

dv

dt
+

∂z

∂w

dw

dt
, (20)

dz

dt
=

u− u∗

u

[
ω1u(1− u)− µ1uv −

Q1uw

1 + Ψ1u

]
+

v − v∗

v

[
ω2v(1− v)− µ2uv −

Q2vw

1 + Ψ2v

]
+

w − w∗

w

[
−χw +

(
e1uw

1 + Ψ1u
+

e2vw

1 + Ψ2v

)(
w

σ + w

)]
,

dz

dt
= (u− u∗)

[
ω1(1− u)− µ1v −

Q1w

1 + Ψ1u

]
+ (v − v∗)

[
ω2(1− v)− µ2u− Q2w

1 + Ψ2v

]
+ (w − w∗)

[
−χ+

(
e1uw

1 + Ψ1u
+

e2vw

1 + Ψ2v

)
1

σ + w

]
,
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dz

dt
= (u− u∗)

[
ω1 − ω1u− µ1v −

Q1w

1 + Ψ1u
− ω1 + ω1u

∗ + µ1v
∗ +

Q1w
∗

1 + Ψ1u∗

]
+ (v − v∗)

[
ω2 − ω2v − µ2u− Q2w

1 + Ψ2v
− ω2 + ω2v

∗ + µ2u
∗ +

Q2w
∗

1 + Ψ2v∗

]
+ (w − w∗)

[
− χ+

e1uw

(1 + Ψ1u)(σ + w)
+

e2vw

(1 + Ψ2v)(σ + w)

+ χ− e1u
∗w∗

(1 + Ψ1u∗)(σ + w∗)
− e2v

∗w∗

(1 + Ψ2v∗)(σ + w∗)

]
,

dz

dt
= (u− u∗)

[
ω1(u

∗ − u) + µ1(v
∗ − v) +

Q1w
∗

1 + Ψ1u∗ − Q1w

1 + Ψ1u

]
+ (v − v∗)

[
ω2(v

∗ − v) + µ2(u
∗ − u) +

Q2w
∗

1 + Ψ2v∗
− Q2w

1 + Ψ2v

]
+ (w − w∗)

[
e1uw

(1 + Ψ1u)(σ + w)
− e1u

∗w∗

(1 + Ψ1u∗)(σ + w∗)
+

e2vw

(1 + Ψ2v)(σ + w)

− e2v
∗w∗

(1 + Ψ2v∗)(σ + w∗)

]
,

dz

dt
= −(u− u∗)2ω1 − (u− u∗)(v − v∗)µ1 + (u− u∗)

Q1w
∗

1 + Ψ1u∗

− (u− u∗)
Q1w

1 + Ψ1u
− (v − v∗)2ω2 − (v − v∗)(u− u∗)µ2

+ (v − v∗)
Q2w

∗

1 + Ψ2v∗
− (v − v∗)

Q2w

1 + Ψ2v
+ (w − w∗)

e1uw

(1 + Ψ1u)(σ + w)

− (w − w∗)
e1u

∗w∗

(1 + Ψ1u∗)(σ + w∗)
+ (w − w∗)

e2vw

(1 + Ψ2v)(σ + w)

− (w − w∗)
e2v

∗w∗

(1 + Ψ2v∗)(σ + w∗)
.

As a result, dz
dt

is a quadratic form that may be written as dz

dt
= −(X)TAX , where the vector is

X = (u− u∗, v − v∗, w − w∗) and the symmetric matrix A is given as follows,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where, a11 = ω1, a12 = µ1, a21 = µ2, a22 = ω2, and a13 = a23 = a31 = a32 = a33 = 0. The
point P6(u

∗, v∗, w∗) is globally asymptotically stable, as shown if dz

dt
< 0; (i.e), the matrix A is

positive definite [6]. The matrix A is now positive if a11 = ω1 > 0, a12 = µ1 > 0, a21 = µ2 > 0,
a22 = ω2 > 0 and a13 = a23 = a31 = a32 = a33 = 0, a11a22 − a12

2 > 0 if a122 < a11a22. This is the
end of the proof.

3 Optimal Control

An Allee effect in the predator will have an influence on the prey-predator-prey population.
As a result, we may utilize some control factors to regulate the effectiveness of such catastrophes.
As a result, while interacting with other species, an optimal control notion is employed to control
the propagation of an Allee effect in the predator. Consider the model (2), where the population
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densities of the 1st prey, 2nd prey and predator at a given time (t) are represented by u = u(t),
v = v(t), w = w(t). The system’s boundedness has previously been proven, (2), enabling us to put
effective controls in place. The time-dependent controls used in this investigation will be chosen
from a set of piece-wise continuous functions [0, T ], the set will be referred to as PC[0, T ]. First,
we consider dividing control. Make a note of the fact that you have influence over this situation
(t). Our goal is to separate the first and second prey in order to create a prey-predator rivalry with
an Allee effect. To do this, we let the term Q1x(t)uw

1 + Ψ1u
be replaced by Q1uw

1 + Ψ1u
in the model. And,

Q2x
∗(t)vw

1 + Ψ2v
be replaced by Q2vw

1 + Ψ2v
.

As previously stated, the aim of using a surviving control is to minimize the rate of death
caused by an Allee effect on the predator. So, instead of σ we put (1 − y(t))σ, where y(t) is the
rate of survival applied at time t. Clearly, the controls are limited.(i.e) 0 ≤ u(t), v(t), w(t) ≤ 1 as
a result, we use the admissible set.

X = x ∈ P ⊂ [0, T ] : 0 ≤ x(t) ≤ ε ∀ t ∈ [0, T ]. (21)

As a result, the controlled model is now as follows:
du

dt
= ω1u(1− u)− µ1uv −

Q1x(t)uw

1 + Ψ1u
,

dv

dt
= ω2v(1− v)− µ2uv −

Q2x
∗(t)vw

1 + Ψ2v
,

dw

dt
= −χw +

(
e1uw

1 + Ψ1u
+

e2vw

1 + Ψ2v

)(
w

(1− y(t))σ + w

)
,

(22)

with initial conditions,(
u(0), v(0), w(0)

)
= (u0, v0, w0) and u, v, w ∈ X. (23)

Minimizing the cost function for the prey-predator competition will now meet the objectives of
lowering the predator population at the end of the interval [0, T] and minimizing the cost extinc-
tion over the application of the controls.

Now, first let us assume that an interaction occurs between the first prey and the predator,

J(x, y) : = u(T ) +
1

2

∫ T

0

[
A(1− x(t))2 +B(y(t))2

]
dt, (24)

where A and B are weight parameters that are affected by the cost of implementing each control.
To summarize, we have the following optimal control problems:

min
x,y∈X

J(x, y),

subject to (22) and (23). We will use the term denote from now on, z = (u, v, w), K0 = (u,w),
i = (x, y), f = (fufvfw)

T where fu, fv and fw indicates the system’s right hand (22) respectively.
Also, we let λ = (λ1λ2λ3)

T be the adjoint stable. From POP(Pontryagin’s Optimality Principle)
[13] now, the Hamiltonian function is defined here H(i, λ, z, t) as

H(i, λ, z, t) =
1

2

[
A(1− x)2 +By2

]
+ λf,
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H(i, λ, z, t) =
1

2

[
A(1− x)2 +By2

]
+ λ1(t)

[
ω1u(1− u)− µ1uv −

Q1xuw

1 + Ψ1u

]
+ λ3(t)

[
−χw +

e1uw

1 + Ψ1u

w

(1− y(t))σ + w

]
,

dλ1(t)

dt
=

∂

∂u
H(t)

= −λ1(t)

[
2ω1u+ µ1v +

Q1xw

(1 + Ψ1u)2
− w

]
− λ3(t)

[
e1w

2

(1 + Ψ1u)2 [(y − 1)σ + w]

]
,

dλ3(t)

dt
=

∂

∂w
H(t)

= −λ1(t)
Q1xu

1 + Ψ1u

− λ3(t)

[
(y − 1)2e1uwσ − e1uw

2 − 3e1Ψ1u
2w2 + (y − 1)2e1Ψ1u

2wσ

(σ − yσ + w +Ψ1uσ −Ψ1uyσ +Ψ1uw)2

]
.

(25)

Here, the transversality condition is
λi(T ) = 0, i = 1, 3, (26)

where the transversality condition is like an upper bound for the partial derivatives of a Hamilto-
nian of the population. Following that, the ideal control is characterized. We get 0 < x∗(t) < εwe
have

∂H

∂x
= −A(1− x)− λ1Q1uw

1 + Ψ1u
= 0,

x∗(t) =
λ1Q1uw

A(1 + Ψ1u)
+ 1,

when ∂H

∂x
< 0,

−A(1− x)− λ1Q1uw

1 + Ψ1u
< 0 ⇒ λ1Q1uw

A(1 + Ψ1u)
+ 1 < 0,

when ∂H

∂x
> 0,

−A(1− x)− λ1Q1uw

1 + Ψ1u
> 0 ⇒ λ1Q1uw

A(1 + Ψ1u)
+ 1 > 1 but (< ε).

As a result, the optimal control’s characterization is

x∗(t) = min

[
ε,max

(
λ1Q1uw

A(1 + Ψ1u)
+ 1, 0

)]
. (27)

Similarly, this is also can be derived by letting the second prey and the predator into a competition
by using a Hamiltonian function. The optimal control can also be derived by using a connection
with Lagrangian multipliers. The procedure continues until the consecutive iterates of control
values are sufficiently close, and the updated control replaces the starting control. Hence, this
proves the theorem.

4 Numerical Simulation

The system (2) is simulated using Mathematica programming in ODE solvers, and the results
are shown with hypothetical parameter values to demonstrate the analytical stability properties
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provided in the preceding sections. Several numerical simulations are displayed with strictly pos-
itive parameter values to gain a better understanding of the dynamics of system (2), as illustrated
in the following figures. The parameter values used are not based on field data, and are simply
hypothetical values used to demonstrate the dynamics of system (2).

10 20 30 40 50
Time

50

100

150

Population

u

v

w

(a) (b)

Figure 1: Existence of two prey populations with (a) e1 = 0.07 and e2 = 0.01. (b) e1 = 1.2 and e2 = 0.08.

In Figure 1: (a), the predator population vanisheswhen the conversion rate, atwhich predation
becomes the predator’s growth rate, is less than 1 (i.e.) e1 and e2 < 1. In other words, if the
predator population is not able to convert prey into its own population fast enough, it will die out.

In Figure 1: (b), the population of the predator species increases, leading to a decrease in
the population of the other two prey populations, when the rate at which predation becomes the
predator’s growth rate increases. This means that if the predator population can convert prey into
its own population at a faster rate, it will grow and have a larger impact on the other populations.

(a) (b)

Figure 2: Existence of prey population against the time(t) can be formulated with the values, (a) Q1 = 0.05 and Q2 = 0.03. (b)
Q1 = 0.02 andQ2 = 0.01.

In Figure 2: (a), we observe that when the intrinsic growth rate values are less than 1, the
second prey population grows faster than the first prey population, and the predator population
disappears. This suggests that the predator population cannot survive if it is not able to keep up
with the growth of the prey populations.

In Figure 2: (b), we assign random values for the positive parameters to study the impact of
the Holling type II functional response. We find that, when this response is used, only the first
prey population continues to grow, while the predator and second prey populations go extinct.
However, when the Holling type II functional response coefficient decreases, it leads to the exis-
tence of the first prey population. This implies that the predator populationmay be able to survive
and coexist with the prey populations if it can adjust its feeding behavior based on the availability
of prey.
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(a) (b)

Figure 3: (a) Existence of the second prey populations when Q1 = 1.5, Q2 = 1.2 and σ = 0.2. (b) Existence of periodic solutions when
an Allee threshold frequency is σ = 0.01.

In Figure 3: (a) presents a graph demonstrating that only the second prey population exists
when the Holling type II functional response coefficient values are greater than 1. This suggests
that the predator population is not able to consume enough of the prey to survive, and the first
prey population may also be affected.

In Figure 3: (b), we observe that when an Allee effect threshold frequency value is between
0 < σ < 1, the first prey population goes extinct, while the second prey and predator populations
exhibit a periodic solution. This means that the populations experience cyclical changes in their
numbers over time, and the presence of the Allee effect threshold frequency value may have con-
tributed to the extinction of the first prey population. It is important to note that further research
may be required to understand the specific factors that contribute to the observed population dy-
namics.

5 Conclusion

This paper discuss the dynamical analysis of two prey and one predator interactions along
with an Allee effect on a predator. To study the dynamics of this system, a model with two prey
and one predator with an Allee effect on a predator is proposed. After that we scaled the model in
a dimensionless type. Thenwe discuss the positive invariance and boundedness of themodel. The
proposed model has six equilibrium points along with an endemic equilibrium point is observed
in this paper. The endemic equilibrium is proved by Descartes rule. And, the stability analysis is
formulated in this paper by finding the eigen values of the Jacobian matrix of the system. The sta-
bility is proven both locally and globally with the help of Routh-Hurwitz criterion and Lyapunov
function. In general, disease and disaster studies require some level of control to limit the efficacy
of catastrophes or the transmission of disease. Many researchers employ an optimal control strat-
egy to limit the detrimental spread [21, 15]. So, an optimal control approach is discussed in this
paper to reduce the death rate of the predator and prey which have an Allee effect and which are
going to have an Allee effect in an ecosystem. Finally, numerical simulations are analyzed with
the help of positive parameters of the system.

From the numerical approaches, we observe that the predator population gets extinct if the
values of the conversion rate is beyond 1. And, the predator population increases when the con-
version rate values are less than and greater than 1. Meanwhile, when taking intrinsic growth rate
values beyond 1, that provides us to determine the second prey population grows more quickly
than the first and while the predator disappears. And, the small change in numbers takes us by
surprise that suddenly shows us that there is just a population of the first prey left, while the other
species got extinct. Again, by changing the numbers, the second prey population can exist vice
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versa is only observed in this paper. At last, when some changes occur in an Allee threshold fre-
quency (i.e.) if 0 < σ < 1 than the periodic solution occurs between the population of second
prey and the predator population with respect to the time (t) while the first prey got extinct. This
implies that the population of an ecosystem contains three species is bounded within the carrying
capacity of an environment. Generally, the Allee threshold frequency is within 0 < σ < K.
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APPENDIX
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